Understanding Data through Presentation

Odisha Social Science Research & Consultancy

CONTENT

- Significance of diagram and graphs
- Comparison of tabular and diagrammatic, graphics presentation
- Difference between diagrams and graphs
- General rule for constructing diagrams and graphs
- Types of diagrams
 - Diagrams and graphs for understanding data

Learning Objective

- Trainee will be able to describe:
 - significance of diagrams and graphs, Compare between tabular and diagrammatic, graphics presentation;
 - general rule for constructing diagrams and graphs;
 - able to construct different types of diagrams and graphs
- Trainee will be able to use appropriate diagrams and graphs to understand data

Significance of diagram and graphs

- Gives birds eye view of the entire data.
- The mind through the eye can more readily appreciate the significance of the figures.
- Figures are dry but diagram and graphs delight the eye.
- More popular in exhibition, fairs, conference, board meetings and public functions.
- Great memorizing effect.
- Easy and quick comparison.
- Bring out hidden fact and relationship
- Stimulate and aid analytical thinking and investigation.

Comparison of tabular, diagrammatic & graphics presentation

- i. Table contains precise figures, diagrams give only an approximate idea.
- ii. More information on a number of characteristic can be presented in a table than in one graph or diagrams.
- iii. Tables require much closer reading and more difficult to interpret than diagrams.
- iv. Graphs and diagrams have a visual appeal and therefore more impressive to lay man.
- v. For higher statistical analysis data has to be presented in tabular form

Difference between diagrams and graphs

Graphs

- For construction a graph paper is required.
- It depicts functional or mathematical relationship between two variables, whereas diagram does not.
- For presenting frequency distribution and time series data, graphs are more appropriate than diagrams

Diagrams

- Constructed in plain papers.
- More attractive to the eye than the graph and as such are better suited for publicity and propaganda.

General rule for constructing diagrams and graphs

- Number
- Title
- Proportion between width and height
- Selection of scale
 - example "million of tones" number of persons in thousand", etc.
- Footnotes
- Index
- Neatness and Cleanness
- Simplicity:-
 - reader can understand their meaning clearly and easily

Types of diagrams

- One-dimensional diagram
 - bar diagrams
- Two dimensional diagram
 - rectangles, squares and circles.
- Three dimensional diagram
 - cubes, cylinders, and spheres
- Pictographs and
- Cartograms

One-dimensional diagram: bar diagrams

- Only one dimension i.e. length of the bar represents the value of the variable.
- These are very simple and easy to understand.
- > Bar should be uniform thickness and space between bars should be uniform.
- The vertical bars may be preferred to horizontal bars and respective figures may be written at the top of the bar.

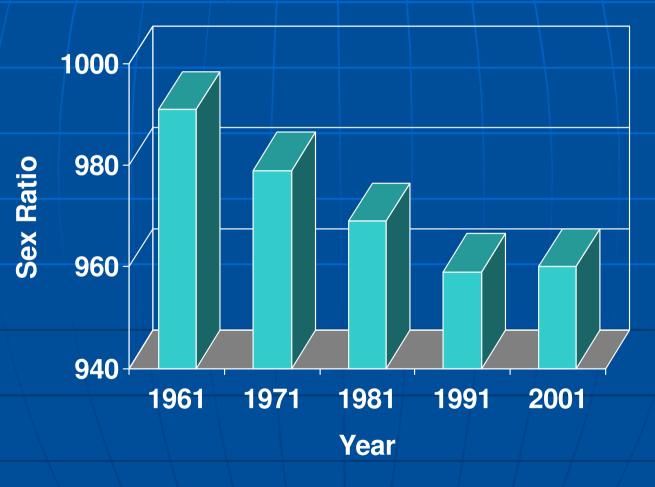
Types of bar diagrams

- > Simple Bar Diagram: Used to present only one variable for different time period or for different regions
- Multiple bar diagram: Used to represent two or more sets of inter related data
- > Deviation bar: Used for representing net quantities excess or deficit.
- > Percentage bar: Used to present relative changes in data
- > Sub-divided bar: Each bar is further subdivided in to various components 10

Types of bar diagrams

Table 3.1 Sex Ratio (females per 000' males) of Orissa by Social Groups

Year	Scheduled Castes			Scheduled Tribes			General		
	R	U	T	R	U	T	R	U	T
1961	1020	930	1015	1018	946	1016	1013	779	991
1971	996	955	993	1009	958	1007	1000	821	979
1981	992	951	988	1015	947	1012	994	837	969
1991	981	932	975	1006	930	1002	983	849	959
2001	983	949	979	1006	948	1003	980	881	960


Source: Census of India, 1961 – 2001

R = Rural, U = Urban, T = Total

Please find out the significant features of DATA from the table

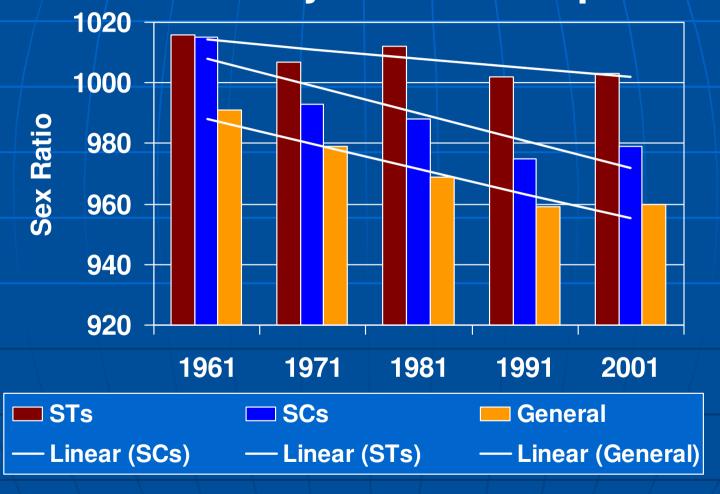
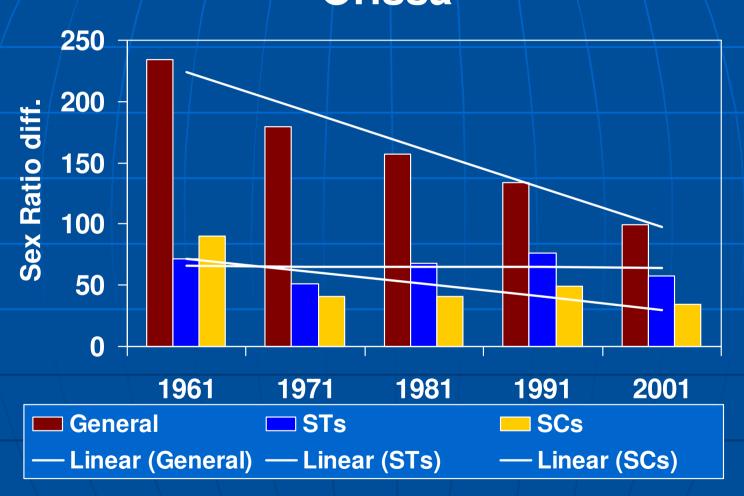

Simple Bar Diagram

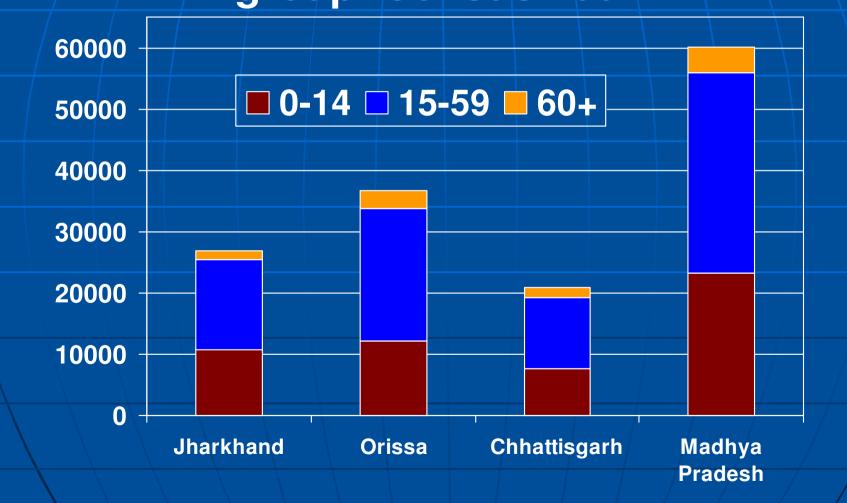
Fig. 3.1 Sex ratio (Females per 000' Males) in Orissa: 1961 - 2001


Multiple Bar Diagram

Sex ratio (Females per 000' Males) in Orissa by Social Groups

Multiple Bar Diagram

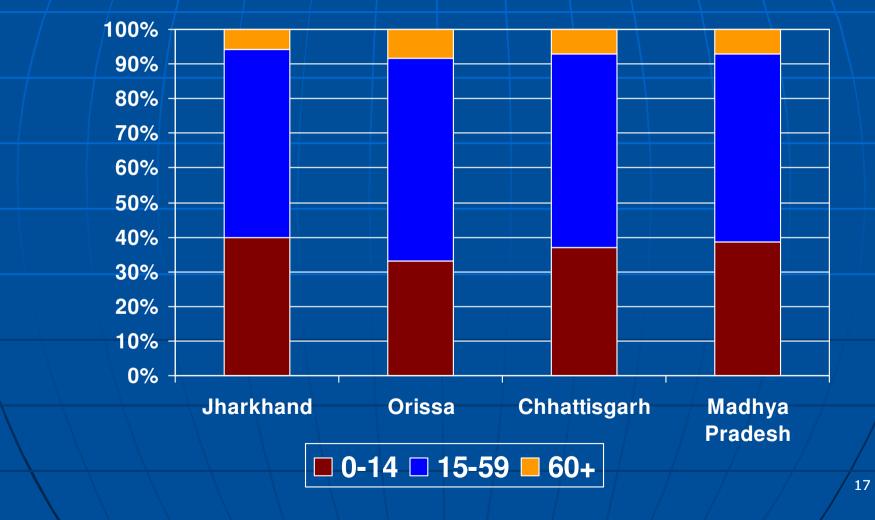
Rural-Urban difference in the sex ratio in Orissa



Population of Four Indian States by Broad Age Group: Census 2001 Population in 000' numbers

States			Chhattisg	Madhya
Age	Jharkhand	Orissa	arh	Pradesh
Group				
0-14	10709	12208	7693	23252
15-59	14625	21496	11609	32655
60+	1579	3039	1504	4281

Sub-divided Bar Diagram


Fig. 3.4 Distribution of population by age group: Census 2001

16

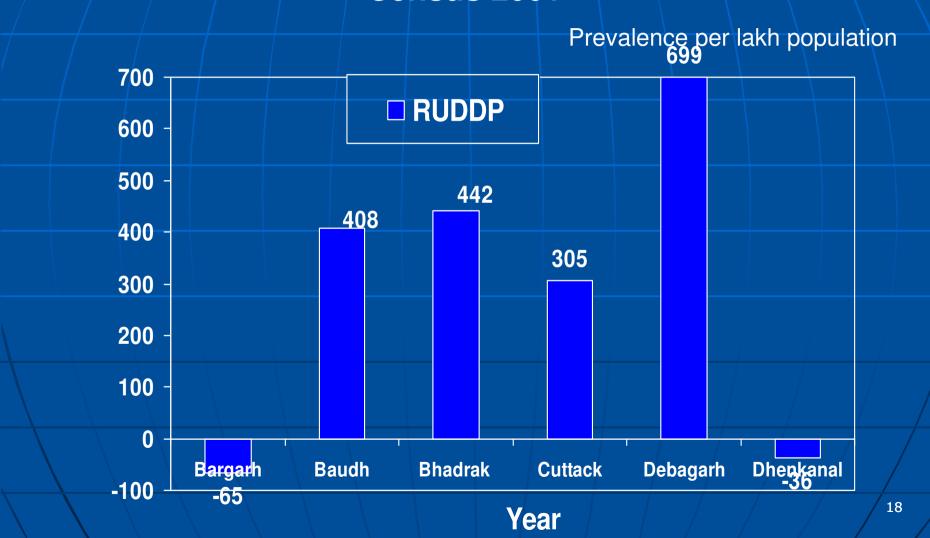

Percentage Bar Diagram

Fig. 3.5 Percentage distribution of population by age group: Census 2001

Deviation Bar Diagram

Rural – Urban Difference in Prevalence of Disability-Census 2001

Area or surface diagram where two dimensions-length and breadth are taken into consideration to represent the data series.

Here area of the diagram represents the given data.

Important types of such diagram are:

- i) Rectangle,
- ii) Squares,
- iii) Circles,
- iv) Pie diagram

i) Rectangle,

Since the area of a rectangle is equal to the product of its length and width, while constructing such a diagram both length and width are considered.

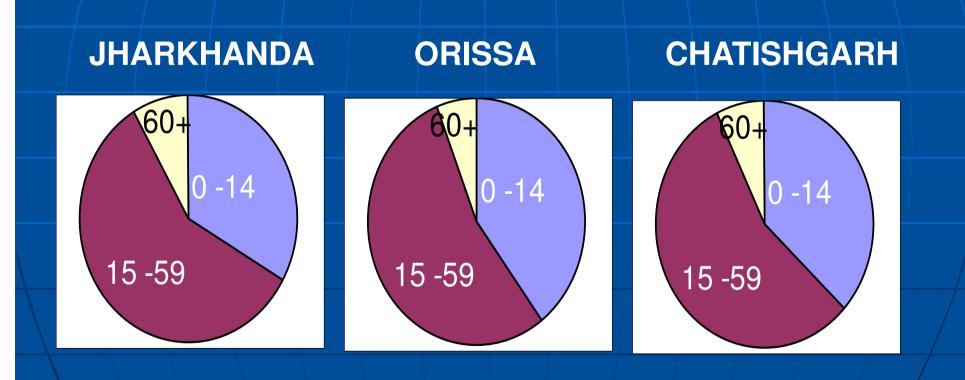
ii) Squares

- When the values of the items vary widely, squares should be preferred to rectangles to represent the data.
- One has to take the square root of the values of the item and then select a suitable scale to draw squares.

iii) Circles

- Here the data values are proportional to the area of the circle.
- > Area of the circle is proportional to the squares of the radius.
- One has to divide the values of the items by ∏ and then take the square root to find the radius of the circles.
- Select a suitable scale to draw the circles.

iv) Pie diagram


- ➢ Pie diagram are very popular to show relative changes in terms of percentage break down of different components.
- > Examples: percentage shares of different sectors of economy in the group of the states.
- > Steps for Construction
 - Work out the percentage share of different components
 - Convert the percentage share into corresponding degrees on the circle by multiplying with 360/100.

iv) Pie diagram

- ➤ Draw a circle of appropriate size with a compass. Size depends upon the available space and other factors of presentation.
- ➤ Use different colours or shades to distinguish different components.
- Generally while cutting sectors in the circle the largest sector (representing the largest component) should be drawn at 12 O'clock position in the circle and other components sectors are placed in clock wise manner in descending orders of magnitude.

23

Fig. 3.7 Percentage Composition of population by age Group: 2001 Census

Three - Dimensional Diagrams (Volume diagram):

- In such diagram three dimensions length, breadth and height are taken into consideration and diagrams are show constructed that their volumes are proportional to the values of the items.
- > Cubes, Cylinders and spheres are usually used to re-present data in this category.

Pictographs or pictorial diagrams: Pictographs are very popularly used in presenting statistical data. In this category actual pictures are used to depict the kind of data being dealt with.

Population of Orissa

Year	1951	1961	1971	1981
Population (in million)	14	18	22	26

Source: Census of India, 1961 – 2001

Population of Orissa

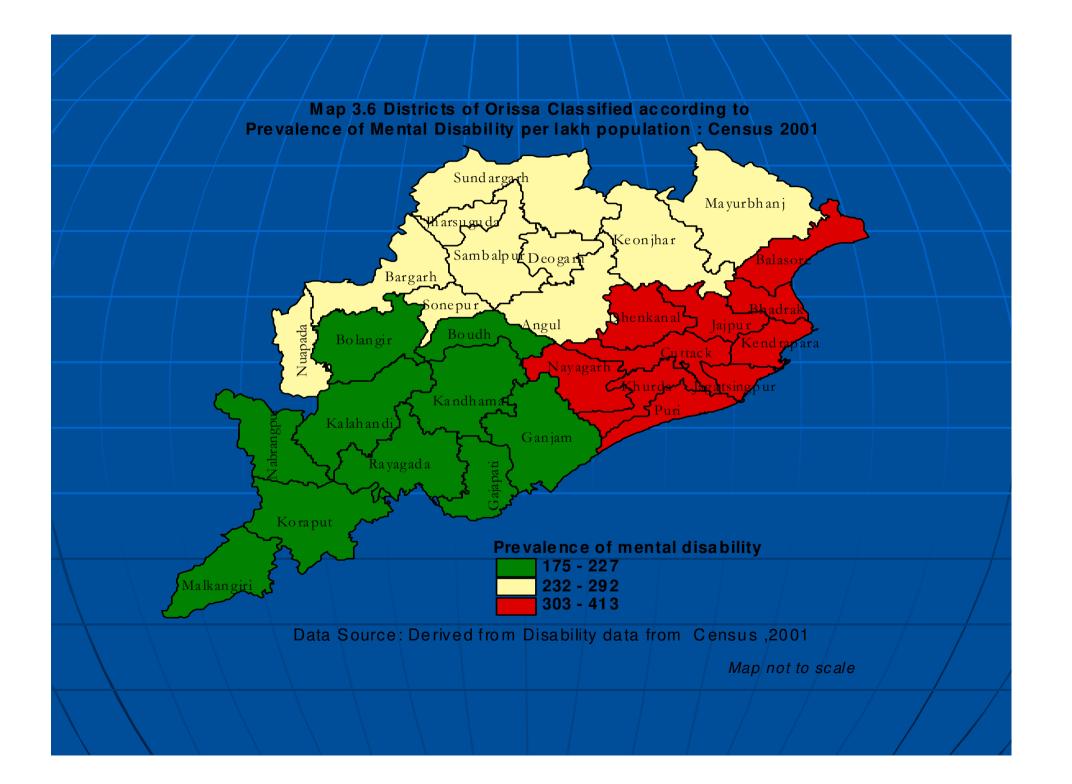
Year

1951 🙂 🙂 🙂 🙂 🙂 💩

1961

1971 🙂 🙂 🙂 🙂 🙂 🙂 🙂 🙂

1981 🙂 🙂 🙂 🙂 🙂 🙂 🙂 🙂 😊


Source: Census of India, 1961 - 2001

Cartograms (Statistical Maps)

- Geographical comparison of data
- These are uses to give quantitative information on a geographical basis.
- The quantities on the map can be shown in Many ways, such as through shades or colours by dots, by placing pictograms or actual figures in each.

LOOK AT THE DATA

GRAPHS

Broadly various graphs can be classified under the following two heads

- a) Graphs of time series,
- b) Graphs of frequency distributions.

GRAPHS OF TIME SERIES

- ➤ Values of the variable observed at different point of time give rise to a time series.
- Time series presented graphically becomes extremely helpful in studying changes over time. Such graphs are most widely used in practice.

GRAPHS Contd.

Technique of construction of time series graph

- Time is taken on the X-axis (horizontal) and the variable on the Y-axis (vertical) of the graphs.
- ➤ The unit of time i.e. calendar year or financial year and
- > unit of measurement of the variable should be clearly stated.
- ➤ Generally begin Y-axis with zero and select a suitable scale so that the entire data is accommodated in the space available.

GRAPHS Contd.

- > Technique of construction of time series graph
 - ➤ On the arithmetic scale magnitude is represented by equal distance.
 - Time period vrs. the values of the variables are plotted in the graph paper.
 - Points so obtained are joined with straight lines (not with curves).
 - If in one graph more then two variables are plotted they should be distinguished by thin, thick dotted lines etc.,

- Graph of one variable: When only one variable is to be represented.
- VARIABLES:-If the unit of measurement is same we can represent two or more variables on the same graph and different lines are distinguished by plotting thick, thin, dotted, broken lines etc...

>GRAPH HAVING TWO SCALES:- \If two variables are expressed in two different units, then we will have two scales - one on the left and the other in the right. To facilitate comparison each scale is made proportional to respective average of each. The average values of both the variables are kept in the middle of the graph and then scales are determined.

➤ RANGE CHART:- Shows the range of variation, i.e. the minimum and maximum values of variable for example minimum and maximum temperature for different time period can be depicted with range chart.

Constructing Range Chart

- > Take time on the X-axis and the variables on the Y-axis.
- Draw two curves by plotting the given dataone curve representing the lowest value and the other curve representing the highest value

LOOK AT THE DATA

Trend of Sex Ratio of SCs and STs of Orissa, 1961 - 2001

Ce	ensus	Sc	hedu	led Ca	astes		nedul Tribes	1	Ot	thers	
`	Year O		rissa		Orissa			Orissa			
			R	C	\perp	R	C	\perp	R	U	+
	1961		1020	930	1015	1018	946	1016	1013	779	991
	1971		996	955	993	1009	958	1007	1000	821	979
	1981		992	951	988	1015	947	1012	994	837	969
	1991		981	932	975	1006	930	1002	983	849	959
	2001	\	983	949	979	1006	948	1003	980	881	960

Source: Census of India: 1961 -2001

Fig. 3.9 Trend of Rural – Urban difference in Sex Ratio of Orissa by Social Groups, 1961 - 2001

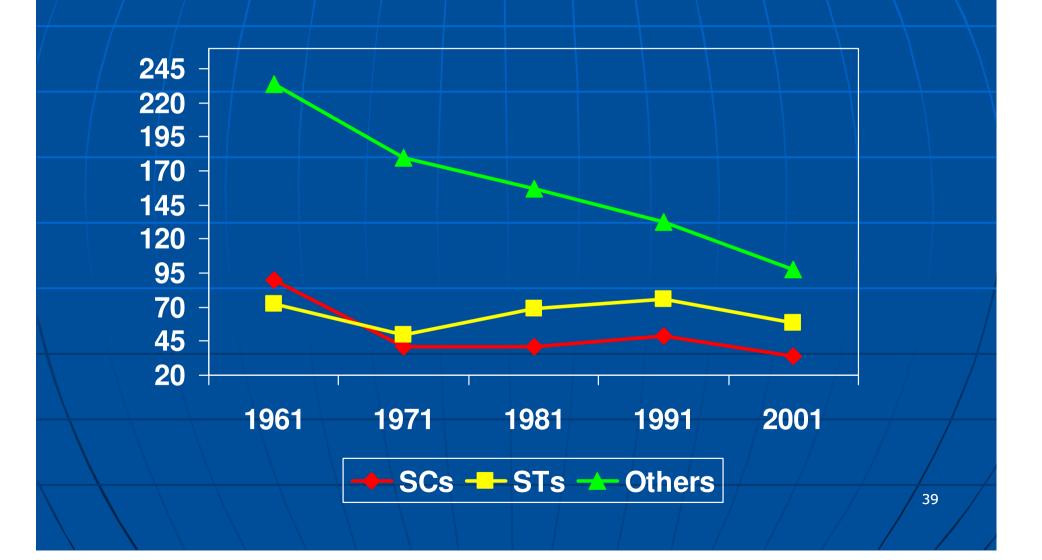


Table 3.2 Age specific sex ratio in Orissa by social groups: 1961—2001

Age Group	Social Groups	1981	1991	2001	
0-14	SCs	992	1035	964	
	STs	999	998	959	
	Others	995	959	955	
15-49	SCs	994	963	982	
	STs	1011	1013	1012	
	Others	953	970	962	
50-59	SCs	868	898	996	
	STs	935	914	1012	
	Others	881	946	942	
60+	SCs	1062	887	1012	
	STs	1247	1044	1203	
\ \	Others	1024	978	981	
All ages	SCs	988	975	979	
	STs	1012	1002	1003	
	Others	969	959	960	

 Others
 969
 959
 960

 Source: Census of India, Social & Cultural Table, 1961, 1971, 1981, 1991& age-data Census-2001

at the data and try to understand it through diagrams and graphs and interpret.

FREQUENCY GRAPHS

- Histogram
- Frequency polygon
- Smoothed frequency curve
- Cumulative frequency curve or ogives.

#